Copied to
clipboard

G = C22×C324D6order 432 = 24·33

Direct product of C22 and C324D6

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C22×C324D6, C6227D6, C334C24, (C32×C6)⋊4C23, C326(S3×C23), (C3×C62)⋊12C22, C63(C2×S32), (C2×C6)⋊12S32, C33(C22×S32), (C2×C3⋊S3)⋊24D6, C3⋊S33(C22×S3), (C3×C3⋊S3)⋊4C23, (C3×C6)⋊6(C22×S3), (C22×C3⋊S3)⋊13S3, (C6×C3⋊S3)⋊26C22, (C2×C6×C3⋊S3)⋊13C2, SmallGroup(432,769)

Series: Derived Chief Lower central Upper central

C1C33 — C22×C324D6
C1C3C32C33C3×C3⋊S3C324D6C2×C324D6 — C22×C324D6
C33 — C22×C324D6
C1C22

Generators and relations for C22×C324D6
 G = < a,b,c,d,e,f | a2=b2=c3=d3=e6=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=c-1, cf=fc, ede-1=fdf=d-1, fef=e-1 >

Subgroups: 3448 in 642 conjugacy classes, 135 normal (5 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C32, C32, D6, C2×C6, C2×C6, C24, C3×S3, C3⋊S3, C3×C6, C3×C6, C22×S3, C22×C6, C33, S32, S3×C6, C2×C3⋊S3, C62, C62, S3×C23, C3×C3⋊S3, C32×C6, C2×S32, S3×C2×C6, C22×C3⋊S3, C324D6, C6×C3⋊S3, C3×C62, C22×S32, C2×C324D6, C2×C6×C3⋊S3, C22×C324D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, S32, S3×C23, C2×S32, C324D6, C22×S32, C2×C324D6, C22×C324D6

Smallest permutation representation of C22×C324D6
On 48 points
Generators in S48
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 35)(14 36)(15 31)(16 32)(17 33)(18 34)(19 46)(20 47)(21 48)(22 43)(23 44)(24 45)(25 39)(26 40)(27 41)(28 42)(29 37)(30 38)
(1 33)(2 34)(3 35)(4 36)(5 31)(6 32)(7 17)(8 18)(9 13)(10 14)(11 15)(12 16)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 48)(26 43)(27 44)(28 45)(29 46)(30 47)
(1 5 3)(2 4 6)(7 11 9)(8 10 12)(13 17 15)(14 16 18)(19 21 23)(20 24 22)(25 27 29)(26 30 28)(31 35 33)(32 34 36)(37 39 41)(38 42 40)(43 47 45)(44 46 48)
(1 3 5)(2 6 4)(7 9 11)(8 12 10)(13 15 17)(14 18 16)(19 21 23)(20 24 22)(25 27 29)(26 30 28)(31 33 35)(32 36 34)(37 39 41)(38 42 40)(43 47 45)(44 46 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 21)(8 20)(9 19)(10 24)(11 23)(12 22)(13 37)(14 42)(15 41)(16 40)(17 39)(18 38)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)

G:=sub<Sym(48)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,35)(14,36)(15,31)(16,32)(17,33)(18,34)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45)(25,39)(26,40)(27,41)(28,42)(29,37)(30,38), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,48)(26,43)(27,44)(28,45)(29,46)(30,47), (1,5,3)(2,4,6)(7,11,9)(8,10,12)(13,17,15)(14,16,18)(19,21,23)(20,24,22)(25,27,29)(26,30,28)(31,35,33)(32,34,36)(37,39,41)(38,42,40)(43,47,45)(44,46,48), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,21,23)(20,24,22)(25,27,29)(26,30,28)(31,33,35)(32,36,34)(37,39,41)(38,42,40)(43,47,45)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,21)(8,20)(9,19)(10,24)(11,23)(12,22)(13,37)(14,42)(15,41)(16,40)(17,39)(18,38)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)>;

G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,35)(14,36)(15,31)(16,32)(17,33)(18,34)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45)(25,39)(26,40)(27,41)(28,42)(29,37)(30,38), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,48)(26,43)(27,44)(28,45)(29,46)(30,47), (1,5,3)(2,4,6)(7,11,9)(8,10,12)(13,17,15)(14,16,18)(19,21,23)(20,24,22)(25,27,29)(26,30,28)(31,35,33)(32,34,36)(37,39,41)(38,42,40)(43,47,45)(44,46,48), (1,3,5)(2,6,4)(7,9,11)(8,12,10)(13,15,17)(14,18,16)(19,21,23)(20,24,22)(25,27,29)(26,30,28)(31,33,35)(32,36,34)(37,39,41)(38,42,40)(43,47,45)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,21)(8,20)(9,19)(10,24)(11,23)(12,22)(13,37)(14,42)(15,41)(16,40)(17,39)(18,38)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34) );

G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,35),(14,36),(15,31),(16,32),(17,33),(18,34),(19,46),(20,47),(21,48),(22,43),(23,44),(24,45),(25,39),(26,40),(27,41),(28,42),(29,37),(30,38)], [(1,33),(2,34),(3,35),(4,36),(5,31),(6,32),(7,17),(8,18),(9,13),(10,14),(11,15),(12,16),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,48),(26,43),(27,44),(28,45),(29,46),(30,47)], [(1,5,3),(2,4,6),(7,11,9),(8,10,12),(13,17,15),(14,16,18),(19,21,23),(20,24,22),(25,27,29),(26,30,28),(31,35,33),(32,34,36),(37,39,41),(38,42,40),(43,47,45),(44,46,48)], [(1,3,5),(2,6,4),(7,9,11),(8,12,10),(13,15,17),(14,18,16),(19,21,23),(20,24,22),(25,27,29),(26,30,28),(31,33,35),(32,36,34),(37,39,41),(38,42,40),(43,47,45),(44,46,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,21),(8,20),(9,19),(10,24),(11,23),(12,22),(13,37),(14,42),(15,41),(16,40),(17,39),(18,38),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34)]])

60 conjugacy classes

class 1 2A2B2C2D···2O3A3B3C3D···3H6A···6I6J···6X6Y···6AJ
order12222···23333···36···66···66···6
size11119···92224···42···24···418···18

60 irreducible representations

dim1112224444
type++++++++
imageC1C2C2S3D6D6S32C2×S32C324D6C2×C324D6
kernelC22×C324D6C2×C324D6C2×C6×C3⋊S3C22×C3⋊S3C2×C3⋊S3C62C2×C6C6C22C2
# reps112331833926

Matrix representation of C22×C324D6 in GL6(ℤ)

-100000
0-10000
00-1000
000-100
0000-10
00000-1
,
100000
010000
001000
000100
0000-10
00000-1
,
100000
010000
001000
000100
000001
0000-1-1
,
-1-10000
100000
001000
000100
000010
000001
,
100000
-1-10000
000-100
001-100
000010
0000-1-1
,
-100000
110000
00-1100
000100
000010
000001

G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1,-1],[-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C22×C324D6 in GAP, Magma, Sage, TeX

C_2^2\times C_3^2\rtimes_4D_6
% in TeX

G:=Group("C2^2xC3^2:4D6");
// GroupNames label

G:=SmallGroup(432,769);
// by ID

G=gap.SmallGroup(432,769);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^6=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c^-1,c*f=f*c,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽